WELCOME

This is not profesional blog. Just share and learn together. For optimum display please use google chrome browser. Thanks for visiting

Sabtu, 29 September 2012

Teori Bahan Isolasi


TEORI BAHAN ISOLASI

1 Bahan Isolasi
Kegunaan bahan isolasi adalah untuk menjadi isolasi di antara dua buah bahan penghantar yang mempunyai perbedaan tegangan dan juga dapat bertindak sebagai penyimpan muatan listrik.
Apabila fungsi dari bahan ini, fungsi utamanya sebagai pengisolasi maka di namakan bahan isoslasi. Sedangkan apabila fungsi utamanya sebagai penyimpan muatan listrik maka di namakan bahan dielektrik. Di dalam bahan dielektrik electron terikat kuat pada atom nukleusnya sehingga konduksi electron tidak akan terjadi. Material ini akan menunjukan sifatnya bila di pengaruhi oleh medan listrik, dan apabila medan listrik mempengaruhinya maka material ini akan menunjukan suatu fenomena yang di namakan polarisasi, yang kemudian akhirnya dapat menolong menjelaskan adanya penimbunan energi elektrostatis.

    1.1      Bahan Isolasi Dibawah Pengaruh Medan Listrik AC
Bila sebuah kapasitor pelat yang mempunyai kapasitansi Co (hampa udara), dan bila medium ini di gantikan dengan dielektrik dengan permitivitas  ảr, maka kapasitansi dari kapasitor adalah :

C = εr . Co            , di mana :     C   =   Muatan
                                                 Co = Muatan hampa udara
                                                  εr  =  Permitivitas relative isolasi

    1.2      Bahan Isolasi Dibawah Pengaruh Medan Listrik DC
Bila suatu bahan di letakkan pada tempat yang di pengaruhi medan listrik, maka respons terhadap medan magnet tergantung pada kemempuan dielektrik dari bahan tersebut.
Contohnya adalah dua buah pelat mendatar yang letaknya sejajar membentuk suatu kapasitor, ia mempunyai luas bidang datar sebesar (a m2 ) dan jarak antara kedua buah pelat itu adalah (d meter). Bila bahan dielektrik yang terdapat pada ruang di antara kedua pelat itu adalah udara ( hampa udara) maka kapasitansi dari kapasitor tersebut  sebesar

         εo . a                   , di mana εo = 8,854 x 10-12 Farad/M
Co = --------
                                d
                                     
Apabila ruang antara kedua pelat itu di isi dengan suatu bahan dielektrik, maka kapasitansi dari kedua pelat tadi menjadi :


         εr . εo .a
Co = ------------
               d
Setiap bahan mempunyai εr yang berbeda, misalkan εr germanium = 16.  Nilai dari εr dapat di peroleh dengan mengukur nilai C pada waktu εo dari Co dari C pada waktu ada dielektrik, jadi =

                         C
εr : --------
         Co
Menyelidiki kemampuan dielektrik berarti juga mempelajari kemampuan ε. Ini termasuk di dalamnya mempelajari hal-hal berikut :
a). Mempelajari hubungan antara bentuk macrocospik, konstanta dielektrik dan sifat atomic dan kebesaran microcospic
b).Mempelajari mengapa suatu bahan mempunyai nilai konstanta dilektrik yang berbeda-beda.
c).Mempelajari pengaruh suhu pada εr untuk beberapa bahan.

»»  Baca Selengkapnya...

Rumus Menentukan Diameter Kabel

1.  Umum
Membahas  mengenai  media  transfer  energi  listrik,  maka  pembahasannya  tidak
terlepas dari kabel yang digunakan. Karena sejauh ini media untuk menghantarkan listrik,
khususnya  untuk  instalasi  tenaga  (power)  masih  membutuhkan  kabel  sebagai  media
penghantarnya,  meskipun  sesuai  dengan  yang  pernah  saya  baca  telah  ada  yang
menemukan  terobosan menggunakan wireless,  tapi  itupun belum banyak digunakan dan
masih dianggap oleh banyak kalangan sebagai sesuatu yang kurang efektif. Oleh karena
itu  landasan  teori  yang  akan  kita  gunakan  dalam  pembahasan  ini  adalah  mengenai
penentuan  diameter  kabel,  kemampuan  dalam  menghantarkan  arus  dan  rumus-rumus
yang digunakan.
Biasanya yang telah banyak dilakukan dalam menentukan diameter kabel untuk
perencanaan sebuah instalasi tenaga adalah dengan menggunakan tabel yang dikeluarkan
oleh pabrikan pembuat kabel tersebut.  Contoh tabel tersebut adalah sebagai berikut :

Akan tetapi bila diperhatikan  tabel dari antara pembuat kabel satu dengan lainnya
angkanya ada yang berbeda, walaupun tidak berbeda jauh. Hal itu bisa dimaklumi karena
dalam  memberi  toleransi  lebih  antara  orang  satu  dengan  lainnya  berbeda.  Perbedaan
angka  tersebut  juga  bergantung  dari  jenis  isolasi  kabel  yang  digunakan,  apakah  PVC
(polyvinyl chloride), TPE (thermo plastis elastomer) atau PUR (polyurithane). Perbedaan
tersebut  juga disebabkan oleh penempatan kabel, apakah ditempatkan di udara bebas, di
tanam dalam tanah atau dalam air.
Dengan bergantung pada tabel tersebut, tentunya sebagian dari kita sebagai orang
listrik  akan  timbul  ketidakpuasan.  Tidak  puas  karena  kita  pernah mempelajari  hukumhukum
  listrik  salah  satunya  adalah  hukum  ohm  yang  pastinya  akan  selalu  ber  korelasi
dengan  penentuan  diameter  kabel  listrik  dalam  kemampuaanya  membawa  arus.
Bagaimana  kalau  tegangan,  panjang  kabel,  jenis  konduktor  yang  akan  kita  gunakan
berbeda, apakah penggunaan tabel tersebut masih berlaku untuk kita jadikan acuan ?
Nah, ini yang akan kita bahas lebih lanjut dalam landasan teori ini.

3.2  Teori Pendukung
  3.2.1  Rumus untuk menentukan diameter kabel
Dalam merencana sebuah instalasi tenaga listrik, maka langkah awal setelah
kita  mengetahui  berapa  tegangan  listrik  serta  daya  yang  dibutuhkan  adalah
menentukan  diameter  kabel  yang  akan  digunakan.  Dibawah  ini  adalah  rumus
dalam menentukan diameter kabel :



Dari  rumus  diatas,  secara  garis  besar  dapat  kita  lihat  bahwa  penampang
kabel  berbanding  lurus  dengan  panjang  kabel  dan  berbanding  terbalik  dengan
tegangan, artinya semakin panjang kabel yang digunakan serta untuk memperoleh
tegangan  yang  konstan  maka  semakin  besar  pula  penampang  kabelnya.  Akan
tetapi pada prakteknya selalu ada saja rugi tegangan pada penghantar, maka dalam
rumus  diatas  disertakan  juga  rugi  tegangan  yang  kita  inginkan  (  ev  ),  yang
nantinya  rugi  tegangan  inilah  yang  akan  berhubungan  dengan  hukum  ohm,
menentukan  I  (arus)  yang dihasilkan.  Jenis konduktor yang dalam  rumus di atas
dituliskan  sebagai  y  atau  daya  hantar  jenis,  juga  akan menentukan  penampang
kabel,  56  untuk  daya  hantar  jenis  tembaga,  32,7  untuk  daya  hantar  jenis
alumunium dan 7 untuk daya hantar  jenis besi. Akan  tetapi  tembaga adalah  jenis
penghantar  yang  paling  umum  digunakan  maka  dalam  rumus  di  atas  yang
dituliskan adalah daya hantar jenis tembaga.

Contoh soal  1:
Sebuah  pemanas  heater  380  volt  10000  watt  rencananya  akan  disambungkan
dengan kabel tembaga dengan panjang 350 meter dari sumber listrik (panel), rugi
tegangan  yang  diinginkan  adalah  5  volt.  Hitung  berapa  diameter  kabel  yang
dibutuhkan ?
Penyelesaian :
q = ( L . N ) : ( y . ev . E )
q = (350 . 10.000) : ( 56 . 5 . 380 )  
q = (3.500.000) : (106.400)
q = 32,8 mm2
Jadi, penampang kawat  tembaga  yang dibutuhkan untuk pemanas heater dengan
instalasi  sepanjang 350 meter adalah 32,8 mm  atau bila   memakai ukuran kabel
yang umum dijual di pasaran adalah dengan ukuran kabel 35 mm2

 3.2.2  Rumus untuk mengetahui resistansi (hambatan) dalam kabel
Hal yang perlu kita ketahui selanjutnya setelah menentukan diameter kabel
adalah mengetahui  resistansinya,  karena  seperti  yang  telah  kita  ketahui  bersama
bahwa  resistansi  inilah  dalam  hukum  ohm  nilainya  akan  berbanding  terbalik
dengan  tegangan  (V)  dan  arus  (I).  Rumus  untuk  mengetahui  resistansi  dalam
kabel adalah :

Karena pada umumnya yang kita ketahui pada kabel adalah diameter penampang,
sedangkan  untuk menggunakan  rumus  di  atas  harus  diketahui  luas  penampang,
maka kita dapat mencarinya dengan rumus :


Contoh soal 2 :
Dari  contoh  soal  no.1  di  atas,  selanjutnya  akan  dapat  kita  ketahui  berapa
resistansinya dengan memakai rumus 1.2 di atas.
Penyelesaian :


3.2.3  Hukum Ohm
Pada suatu rangkaian tertutup, seperti gambar dibawah ini :


Besarnya  arus  I  berubah  sebanding  dengan  tegangan V  dan  berbanding  terbalik
dengan beban tahanan R, atau dapat dinyatakan dengan rumus :


Contoh soal 3 :
Dari contoh soal gabungan no.1 dan 2 di atas dengan menggunakan hukum ohm,
maka kita akan dapat mengetahui kerugian daya listrik yang  ada pada penghantar
sepanjang 350 meter tersebut.

Untuk mengetahui rugi daya yang ada pada penghantar, maka yang kita gunakan
adalah R total, R total adalah penjumlahan R1 dan R2 yaitu = 14,4404332 + 0,175
= 14,6154332
Daya (P) keseluruhan setelah dihubungkan kabel  35  mm2  adalah = I2 . R
P total = 26,3152 .  14,6154332
P total = 692,479225 . 14,6154332
P total = 10120 watt

Rugi daya pada penghantar adalah P total – P beban = 10120 – 10000 = 120 watt
Jadi, dengan demikian dapat diketahui bahwa heater pemanas 10000 watt 380 volt
yang  dihubungkan  dengan  kawat  tembaga  diameter  32,8  mm2  sepanjang  350
meter, rugi dayanya  adalah sebesar 120  watt.

Disamping  faktor diatas,  rugi-rugi  listrik  juga dapat disebabkan oleh media  isolasi yang
tidak baik sehingga arus bocor mengalir. Perhitungan sama arus yang mengalir dikalikan
dengan  besarnya  dari  tahanan  tersebut.  Jika  seandainya  instalasi  kabel  heater  pemanas
diatas memakain  acuan  tabel, maka  kita  dapat  hitung  betapa  banyaknya  rugi-rugi  daya
listrik yang ditimbulkan.

3.3  Jenis Daya Listrik

3.3.1  Daya aktif
Untuk  tenaga  listrik nyata  (wujud)  yang dikeluarkan oleh  arus bolak-balik
yang mempunyai  fasa  adalah :
   
Dalam jumlah usaha nyata/ wujud yang dilakukan oleh arus dan tegangan bolakbalik
 yang mempunyai  fasa  yaitu sebesar :
 




3.3.2  Daya reaktif (VAR)
Adalah  daya  listrik  yang  secara  electric  bisa  diukur,  secara  vektor
merupakan  penjumlahan  vektor  dari  perkalian E  x  I  dimana  arus mengalir  pada
komponen  resistor  sehingga  arah vektornya  searah dengan  tegangan, dan vektor
yang  arah  90 deg  terhadap  tegangan,  tergantung  pada  beban  seperti  induktif  dan
kapasitif. Biasanya daya yang searah dengan tegangan disebut dengan daya aktif,
sedangkan yang lain disebut dengan daya reaktif.
Untuk  tenaga  listrik  reaktif  yang  dikeluarkan  oleh  arus  bolak-balik  yang
mempunyai  fasa dengan tegangan bolak-balik yaitu :
   
3.3.3  Segitiga daya
Dari  hal  tersebut  diatas,  maka  daya  listrik  yang  digambarkan  sebagai
segitiga siku-siku yang secara vektoris adalah penjumlahan daya aktif dan reaktif
dan sebagai resultannya adalah daya semu atau daya buta.



 



3.4  Macam – Macam Besaran Listrik dan Satuannya

3.4.1  Tabel Besaran Listrik

3.4.2  Tabel Satuan Turunan

                                                                 

»»  Baca Selengkapnya...

Fisika Dasar


Fisika adalah ilmu yang mempelajari benda-benda serta fenomena dan keadaan
yang terkait dengan benda-benda tersebut. Untuk menggambarkan suatu
fenomena yang terjadi atau dialami suatu benda, maka didefinisikan berbagai
besaran-besaran fisika. Besaran-besaran fisika ini misalnya panjang,
jarak, massa, waktu, gaya, kecepatan, temperatur, intensitas cahaya, dan
sebagainya. Terkadang nama dari besaran-besaran fisika tadi memiliki kesamaan
dengan istilah yang dipakai dalam keseharian, tetapi perlu diperhatikan
bahwa besaran-besaran fisika tersebut tidak selalu memiliki pengertian
yang sama dengan istilah-istilah keseharian. Seperti misalnya istilah
gaya, usaha, dan momentum, yang memiliki makna yang berbeda dalam
keseharian atau dalam bahasa-bahasa sastra. Misalnya, “Anak itu bergaya di depan kaca”, “Ia berusaha keras menyelesaikan soal ujiannya”, “Momentum
perubahan politik sangat tergantung pada kondisi ekonomi negara”.
Besara-besaran fisika didefinisikan secara khas, sebagai suatu istilah fisika
yang memiliki makna tertentu. Terkadang besaran fisika tersebut hanya
dapat dimengerti dengan menggunakan bahasa matematik, terkadang dapat
diuraikan dengan bahasa sederhana, tetapi selalu terkait dengan pengukuran
(baik langsung maupun tidak langsung). Semua besaran fisika harus dapat
diukur, atau dikuatifikasikan dalam angka-angka. Sesuatu yang tidak dapat
dinyatakan dalam angka-angka bukanlah besaran fisika, dan tidak akan
dapat diukur.
Mengukur adalah membandingakan antara dua hal, biasanya salah satunya
adalah suatu standar yang menjadi alat ukur. Ketika kita mengukur
jarak antara dua titik, kita membandingkan jarak dua titik tersebut dengan
jarak suatu standar panjang, misalnya panjang tongkat meteran. Ketika kita
mengukur berat suatu benda, kita membandingkan berat benda tadi dengan
berat benda standar. Jadi dalam mengukur kita membutuhkan standar sebagai
pembanding besar sesuatu yang akan diukur. Standar tadi kemudian
biasanya dinyatakan memiliki nilai satu dan dijadian sebagai acuan satuan
tertentu. Walau kita dapat sekehendak kita menentukan standar ukur, tetapi
tidak ada artinya bila tidak sama di seluruh dunia, karena itu perlu diadakan
suatu standar internasional. Selain itu standar tersebut haruslah praktis dan
mudah diproduksi ulang di manapun di dunia ini. sistem standar internasional
ini sudah ada, dan sekarang dikenal dengan Sistem Internasional (SI).
Antara besaran fisika yang satu dengan besaran fisika yang lain, mungkin
terdapat hubungan. Hubungan-hubungan antara besaran fisika ini dapat
dinyatakan sebagai persamaan-persamaan fisika, ketika besaran-besaran tadi
dilambangkan dalam simbol-simbol fisika, untuk meringkas penampilan ersamaannya.
Karena besaran-besaran fisika tersebut mungkin saling terkait,
maka tentu ada sejumlah besaran yang mendasari semua besaran fisika yang
ada, yaitu semua besaran-besaran fisika dapat dinyatakan dalam sejumlah
tertentu besaran-besaran fisika, yang disebut sebagai besaran-besaran dasar.
Terdapat tujuh buah besaran dasar fisika (dengan satuannya masing-masing)
1. panjang (meter)
2. massa (kilogram)
3. waktu (sekon)
4. arus listrik (ampere)
5. temperatur (kelvin)
6. jumlah zat (mole)
7. intensitas cahaya (candela)
Satuan SI untuk panjang adalah meter dan satu meter didefinisikan sebagai
1650763,73 kali panjang gelombang cahaya transisi 2p10 – 5d5 isotop Kr86.
Satuan SI untuk waktu adalah sekon dan satu sekon didefinisikan sebagai 9
»»  Baca Selengkapnya...

Radiasi Tegangan Tinggi


Apakah Radiasi Tegangan Tinggi itu?
Masalah radiasi tegangan tinggi sebenamya sudah sejak lama dipikirkan oleh para ahli, paling tidak semenjak James Clark Maxwell mengumumkan teorinya tentang :A dynamic theory of the electromagnetic field, suatu teori revolusioner tentang pergeseran arus yang diramalkan dapat menimbulkan gelombang elektromagnet yang merambat dengan kecepatan cahaya. Pada waktu teori tersebut diumumkan (tahun 1865) Maxwell belum menyebutnya sebagai suatu radiasi seperti yang kita kenal saat ini.
Secara teoritis elektron yang membawa arus listrik pada jaringan tegangan tinggi akan bergerak lebih cepat bila perbedaan tegangannya makin tinggi. Elektron yang membawa arus listrik pada jaringan interkoneksi dan juga pada jaringan transmisi, akan menyebabkan timbulnya medan magnet maupun medan listrik. Elektron bebas yang terdapat dalam udara di sekitar jaringan tegangan tinggi, akan terpengaruh oleh adanya medan magnet dan medan listrik, sehingga gerakannya akan makin cepat dan hal ini dapat menyebabkan timbulnya ionisasi di udara. Ionisasi dapat terjadi karena elektron sebagai partikel yang bermuatan negatif dalam gerakannya akan bertumbukan dengan molekul-molekul udara sehingga timbul ionisasi berupa ion-ion dan elektron baru. Proses ini akan berjalan terus selama ada arus pada jaringan tegangan tinggi dan akibatnya ion dan elektron akan menjadi berlipat ganda terlebih lagi bila gradien tegangannya cukup tinggi. Udara yang lembab karena adanya pepohon di bawah jaringan tegangan tinggi akan lebih mempercepat terbentuknya pelipatan ion dan elektron yang disebut dengan avalanche.
Akibat berlipatgandanya ion dan elektron ini (peristiwa avalanche) akan menimbulkan korona berupa percikan busur cahaya yang seringkali disertai pula dengan suara mendesis dan bau khusus yang disebut dengan bau ozone. Peristiwa avalanche dan timbulnya korona akibat adanya medan magnet dan medan listrik pada jaringan tegangan tinggi inilah yang sering disamakan dengan radiasi gelombang elektromagnet atau radiasi tegangan tinggi.

Berbahayakah Radiasi Tegangan Tinggi itu?
Secara umum setiap bentuk radiasi gelombang elektromagnet dapat berpengaruh terhadap tubuh manusia. Sel-sel tubuh yang mudah membelah adalah bagian yang paling mudah dipengaruhi oleh radiasi. Tubuh yang sebagian besar berupa molekul air, juga mudah mengalami ionisasi oleh radiasi. Seberapa jauh pengaruhnya terhadap tubuh manusia, tergantung pada batas-batas aman yang diizinkan. Sebagai contoh untuk radiasi nuklir yang aman bagi manusia (untuk pekerja radiasi) adalah dosis di bawah 5000 mili Rem per tahun, sedangkan untuk masyarakat umum adalah 10 % dari harga tersebut. Lantas bagaimanakah dengan batasan aman untuk radiasi tegangan tinggi?
Sejauh ini batasan aman untuk radiasi tegangan tinggi masih terus diteliti dan para ahli di seluruh dunia masih belum sampai kepada kata sepakat tentang batasan aman tersebut. Penelitian pengaruh radiasi tegangan tinggi sejauh ini baru diketahui akibatnya terhadap binatang percobaan di laboratorium. Radiasi tegangan tinggi (radiasi elektromagnet) ternyata mempengaruhi sifat kekebalan (imun) tikus-tikus percobaan.
Apakah radiasi tegangan tinggi juga bersifat cocarcinogenik (merangsang timbulnya kanker), ternyata masih dalam taraf dugaan saja, karena tikus-tikus percobaan yang dikenai radiasi tegangan tinggi tidak ada yang menjadi terserang kanker, walaupun diramalkan kemungkinan terkena kanker dapat meningkat karenanya. Memang terdapat perbedaan antara manusia dan tikus, sehingga penelitian terhadap tikus-tikus tersebut mungkin lain hasilnya terhadap manusia. Walaupun demikian, usaha manusia untuk mengurangi dampak teknologi berupa jaringan interkoneksi dan transmisi tegangan tinggi yang dapat menimbulkan kemungkinan terkena radiasi tegangan tinggi tetap perlu dilakukan, agar diperoleh kepastian mengenai harga batas aman bagi manusia.
Satuan untuk mengukur radiasi tegangan tinggi tidaklah sama dengan satuan untuk radiasi nuklir yang menggunakan satuan REM, singkatan Rontgen Equivalent of Man. Satuan radiasi tegangan tinggi masih menggunakan satuan Weber/meter2, yaitu satuan flux dalam sistem mks. Mengingat bahwa l Weber/m2 sama dengan 104 gauss, sedangkan satuan untuk induksi magnetik telah ditentukan dengan satuan Tesla yang besarnya sama dengan 104 gauss, maka satuan radiasi tegangan tinggi dapat juga menggunakan satuan Tesla yang identik dengan Weber/m2.
Walaupun belum ada kata sepakat untuk menentukan batas aman bagi radiasi tegangan tinggi, namun Amerika Serikat sebagai negara industri yang banyak menggunakan jaringan tegangan tinggi, telah menetapkan batas aman sebesar 0,2 mikro Weber/m2. Sedangkan Rusia (bekas Uni Sovyet) menetapkan batas aman radiasi tegangan tinggi dengan faktor 1000 lebih rendah dari yang telah ditetapkan Amerika Serikat. Adanya perbedaan penetapan batas aman ini disebabkan karena penelitian mengenai dampak radiasi tegangan tinggi terhadap manusia masih belum selesai dan masih terus dilakukan. Hal menarik dari penentuan harga batas aman tersebut adalah bahwa Amerika Serikat yang menetapkan harga batas aman tersebut adalah Radiation Protection Board, sedangkan di Rusia oleh Ministry Of Health (Departemen Kesehatan), sedangkan di Australia oleh Australian Radiation Protection Society (ARPS), suatu lembaga non pemerintah.
»»  Baca Selengkapnya...